Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 21(6): e3002144, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-20243985

RESUMEN

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CLpro) encoded by diverse coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CLpro, including 3CLpro-mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8's ability to sense coronavirus 3CLpros and, instead, enables sensing of 3C proteases (3Cpro) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intraspecies variation in inflammasome-mediated viral sensing and immunopathology.


Asunto(s)
COVID-19 , Picornaviridae , Humanos , Inflamasomas/metabolismo , Picornaviridae/genética , Picornaviridae/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Proteasas , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
2.
Contemp Clin Trials ; 112: 106625, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1549675

RESUMEN

MOTIVATION: Platform designs - master protocols that allow for new treatment arms to be added over time - have gained considerable attention in recent years. Between 2001 and 2019, 16 platform trials were initiated globally. The COVID-19 pandemic seems to have provided a new motivation for these designs. We conducted a rapid review to quantify and describe platform trials used in COVID-19. METHODS: We cross-referenced PubMed, ClinicalTrials.gov, and the Cytel COVID-19 Clinical Trials Tracker to identify platform trials, defined by their stated ability to add future arms. RESULTS: We identified 58 COVID-19 platform trials globally registered between January 2020 and May 2021. According to trial registries, 16 trials have added new therapies (median 3, IQR 4) and 11 have dropped arms (median 3, IQR 2.5). About 50% of trials publicly share their protocol, and 31 trials (53%) intend to share trial data. Forty-nine trials (84%) explicitly report adaptive features, and 21 trials (36%) state Bayesian methods. CONCLUSIONS: During the pandemic, there has been a surge in the number of platform trials compared to historical use. While transparency in statistical methods and clarity of data sharing policies needs improvement, platform trials appear particularly well-suited for rapid evidence generation. Trials secured funding quickly and many succeeded in adding new therapies in a short time period, thus demonstrating the potential for these trial designs to be implemented beyond the pandemic. The evidence gathered here may provide ample insight to further inform operational, statistical, and regulatory aspects of future platform trial conduct.


Asunto(s)
COVID-19 , Pandemias , Teorema de Bayes , Protocolos Clínicos , Humanos , SARS-CoV-2
3.
BMJ Open ; 11(9): e049217, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1408526

RESUMEN

INTRODUCTION: Early phase cancer clinical trials have become increasingly complicated in terms of patient selection and trial procedures-this is reflected in the increasing length of participant information sheets (PIS). Informed consent for early phase clinical trials has been contentious due to the potential ethical issues associated with performing experimental research on a terminally ill population which has exhausted standard treatment options. Empirical studies have demonstrated significant gaps in patient understanding regarding the nature and intent of these trials. This study aims to test whether enhanced informed consent for patient education can improve patient scores on a validated questionnaire testing clinical trial comprehension. METHODS AND ANALYSIS: This is a randomised controlled trial that will allocate patients who are eligible to participate in one of four investigator-initiated clinical trials at the Royal Marsden Drug Development Unit to either a standard arm or an experimental arm, stratified by age and educational level. The standard arm will involve the full length trial PIS, followed by electronic or paper administration of the Quality of Informed Consent Questionnaire Parts A and B (QuIC-A and QuIC-B). The experimental arm will involve the full length trial PIS, exposure to a two-page study aid and 10 online educational videos, followed by administration of the QuIC-A and QuIC-B. The primary endpoint will be the difference (using a one-sided two-sample t-test) in the QuIC-A score, which measures objective understanding, between the standard and experimental arm. Accrual target is at least 17 patients per arm to detect an 8 point difference (80% power, alpha 0.05). ETHICS AND DISSEMINATION: Ethics approval was granted by the National Health Service Health Research Authority on 15 June 2020-IRAS Project ID 277065, Protocol Number CCR5165, REC Reference 20/EE/0155. Results will be disseminated via publication in a relevant journal. TRIAL REGISTRATION NUMBER: NCT04407676; Pre-results.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Consentimiento Informado , Neoplasias/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Medicina Estatal , Resultado del Tratamiento
4.
Sci Rep ; 10(1): 18149, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1387454

RESUMEN

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Asunto(s)
Antígenos/inmunología , Betacoronavirus/metabolismo , Nanopartículas/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos/genética , Antígenos/metabolismo , Aquifex , Bacterias/enzimología , Proteínas Bacterianas/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus , Ferritinas/genética , Helicobacter pylori/metabolismo , Humanos , Ratones , Complejos Multienzimáticos/genética , Pruebas de Neutralización , Pandemias , Neumonía Viral , Multimerización de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Propiedades de Superficie
5.
Vaccines (Basel) ; 9(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1045354

RESUMEN

The COVID-19 pandemic highlights an urgent need for vaccines that confer protection from SARS-CoV-2 infection. One approach to an effective COVID-19 vaccine may be through the display of SARS-CoV-2 spikes on the surface of virus-like particles, in a manner structurally mimicking spikes on a native virus. Here we report the development of Newcastle disease virus-like particles (NDVLPs) displaying the prefusion-stabilized SARS-CoV-2 spike ectodomain (S2P). Immunoassays with SARS-CoV-2-neutralizing antibodies revealed the antigenicity of S2P-NDVLP to be generally similar to that of soluble S2P, and negative-stain electron microscopy showed S2P on the NDVLP surface to be displayed with a morphology corresponding to its prefusion conformation. Mice immunized with S2P-NDVLP showed substantial neutralization titers (geometric mean ID50 = 386) two weeks after prime immunization, significantly higher than those elicited by a molar equivalent amount of soluble S2P (geometric mean ID50 = 17). Neutralizing titers at Week 5, two weeks after a boost immunization with S2P-NDVLP doses ranging from 2.0 to 250 µg, extended from 2125 to 4552, and these generally showed a higher ratio of neutralization versus ELISA than observed with soluble S2P. Overall, S2P-NDVLP appears to be a promising COVID-19 vaccine candidate capable of eliciting substantial neutralizing activity.

6.
bioRxiv ; 2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: covidwho-666088

RESUMEN

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer - stabilized in the prefusion conformation and fused with SpyCatcher - could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with the SARS-CoV-2 spike-LuS nanoparticles elicited ~25-fold higher neutralizing responses, weight-per-weight relative to spike alone. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.

7.
N Engl J Med ; 383(16): 1544-1555, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: covidwho-680559

RESUMEN

BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Vacunas Virales/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/fisiología , Antígenos CD4 , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Inmunización Pasiva , Pulmón/patología , Pulmón/virología , Macaca mulatta , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T/inmunología , Carga Viral , Vacunas Virales/administración & dosificación , Replicación Viral , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA